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For magnetic knots and links in plasmas we introduce an internal twist and study their dynamical behavior in numerical
simulations. We use a set of helical and non-helical configurations and add an internal twist that cancels the helicity of
the helical configurations or makes a non-helical system helical. These fields are then left to relax in a magnetohydro-
dynamic environment. In line with previous works we confirm the importance of magnetic helicity in field relaxation.
However, an internal twist, as could be observed in coronal magnetic loops, does not just add or subtract helicity, but
also introduces an alignment of the magnetic field with the electric current, which is the source term for helicity. This
source term is strong enough to lead to a significant change of magnetic helicity, which for some cases leads to a loss
of the stabilizing properties expressed in the realizability condition. Even a relatively weak internal twist in these mag-
netic fields leads to a strong enough source term for magnetic helicity that for various cases even in a low diffusion
environment we observe an inversion in sign of magnetic helicity within time scales much shorter than the diffusion
time. We conclude that in solar and stellar fields an internal twist does not automatically result in a structurally stable
configuration and that the alignment of the magnetic field with the electric current must be taken into account.

I. INTRODUCTION

The majority (over 99%) of the observable matter in the
universe is known to be in a state of plasma. Being a plasma,
the electric conductivity is generally high and we observe
electric currents and the magnetic fields these currents gen-
erate. These magnetic fields have been observed in planets,
our Sun, stars, magnetars and galaxies.

Through the Lorentz force the magnetic field acts on the
medium. At the same time, the motions of the medium leads
to a change in electric current and the magnetic field. This
non-linear interaction gives rise to various physically relevant
effects. For instance, it can be used to explain the exponential
amplification of a weak magnetic field (dynamo effect) in stars
and galaxies (see e.g. 10 and 20). Other phenomena for which
this interaction is crucial are solar coronal mass ejections (e.g.
6) and stellar flares (e.g. 27).

For laboratory and astrophysical plasmas we know that
magnetic fields and electric currents have a significant effect
on the dynamics and evolution of the system (e.g. 7, 21, and
25). This is particularly true for magnetically dominated re-
gions like the solar corona18 where the magnetic pressure is
larger than the hydrostatic pressure and magnetic forces dom-
inate. In laboratory devices, the magnetic field is particularly
important in confining hot plasmas in fusion devices like toka-
maks or the Large Helical Device in Toki22.

During solar maxima we can observe large-scale magnetic
flux tubes on the solar surface (e.g. 30). Those are a result
of the dynamo action within the Sun which is responsible for
the 11 year solar cycle. While the plasma motions give rise to
particular magnetic field structure, the magnetic field in turn
affects the plasma motions. Here, the geometry of the field
lines plays an important role in the dynamics. For instance, a
strong magnetic flux tube will rise due to magnetic buoyancy
and a high curvature in the field lines gives rise to additional
Lorentz forces. Finally, reconnection events near magnetic
null points8 (where the magnetic field vanishes) give rise to

strong particle acceleration24.
While it should be evident that the field’s geometry affects

the dynamics, it is less evident that its topology, i.e. field line
connectivity, has a strong effect. The most used quantifier for
the magnetic field topology is the magnetic helicity, which
measures the linkage, twisting, braiding and knottedness of
the magnetic field21. For astrophysical parameter regimes we
know that this quantity changes on much longer time scales
than the dynamics of the system. For instance, we have 11
years for the solar magnetic cycle, which compares to millions
of years for the magnetic helicity decay time (e.g. 10).

This conservation has dramatic consequences for the
plasma dynamics. For a freely relaxing field 31 derived a
minimum energy state with the restriction of magnetic heli-
city conservation. This state has the form of a linear force-free
field with vanishing Lorentz force. Calculations by 28 and 29
in the fusion plasma context showed that a minimum energy
state is a non-linear force-free state. 5 then demonstrated that
the magnetic energy is bound from below by the presence of
magnetic helicity, the so called realizability condition. This
puts severe restrictions on the final equilibrium state, and the
intermediate states the system is allowed to go through during
its evolution.

Magnetic helicity is also being exploited in turbulent dy-
namo theory. In a turbulent plasma it has been shown (e.g.
12, 16, and 19) that helicity conservation leads to an inverse
cascade where small-scale magnetic energy is transformed
into large-scale energy. As a result, an initially weak small-
scale magnetic field is being transformed into a strong large-
scale field. This effect has been used to explain the exis-
tence of strong large-scale magnetic fields in planets, stars and
galaxies.

Following these early analytical results and with the rise of
computing power, various numerical calculations on magnetic
field relaxation have been performed. Ideal magnetohydro-
dynamics (MHD) simulations that preserve the field’s topol-
ogy were proposed by 13 and used by 14 to study the stabil-
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ity of coronal flux tubes in high magnetic Reynolds number
regimes. Using resistive MHD simulations of relaxing mag-
netic braids 32 demonstrated that the relaxed state proposed
by 28 is not necessarily reached, particularly in presence of
further topological invariants. Further works on resistive mag-
netic field relaxation by 15 and 11 showed the restricting ef-
fect of the realizability condition, but also highlighted that
magnetic fields with no helicity that are topologically non-
trivial exhibit a behavior reminiscent of a restricted relaxation.

Magnetic helicity is a second order invariant of MHD.
Higher order invariants can be defined, like those by 26. They
introduced third and fourth order invariants. However, in pres-
ence of even a small amount of magnetic resistivity, magnetic
field line reconnection destroys these invariants which makes
them less suitable for studying real plasmas. Other fourth or-
der invariants are the quadratic helicities (e.g. 2–4 ). Those
have been shown to pose certain restrictions to the plasma dy-
namics, similar to the helicity.

Since authors have almost exclusively focused on the mag-
netic helicity as topological quantifier, there is little work on
topologically non-trivial non-helical fields. Furthermore, the
premise that magnetic helicity is conserved within dynamical
time scales has often been taken for granted in high Reynolds
number regimes. However, the rate of change for the helicity
also depends on the alignment of the electric current density
with the magnetic field which can be significant in some en-
vironments. Here we will present a series of topologically
non-trivial magnetic field configuration that undergo a resis-
tive relaxation using the MHD framework. Those consist of
knots and rings and can be helical or non-helical. We also add
an internal twist to the flux tubes that can add to the helicity
content or cancel it.

II. METHODS

A. Knot Construction

We construct a set of magnetic knots of which some have an
internal twist. Starting at the central spine of the knot we then
construct the full tube with finite width, and leave the space
outside these tubes with no magnetic field. The equation
describing their center line is given as

x(s) =

 (C+ sin(snf))sin[s(nf −1)]
(C+ sin(snf))cos[s(nf −1)]

Dcos(snf)

 , (1)

where C specifies the knot size in the xy-plane, D the extension
in the z-direction, s ∈ [0,2π] is the knot parameter and nf the
number of foils of the knot (nf = 3 for a trefoil knot). Here we
choose nf ∈ {3,4,5}, C = 2 and D = 2.5. Only for the trivial
ring we choose D = 0 and nf = 0. As width for the flux tubes
we choose 0.5.

The magnetic field B is tangent to the central spine. So, we
can write

B̂ = x′(s)/|x′(s)|. (2)

FIG. 1. Magnetic streamlines for the twisted trefoil knot with heli-
city at time 0.

In order to construct a space filling field B for every position
vector r in our domain we find the closest point on the spine
to r. This will give us the minimal curve parameter s and
with x′(s) it gives us B̂ at the point r. To find the appropriate
magnetic field strength at this position we need to take into
account distance to the curve, which can be easily computed
as |r−x(s)|. Using a field strength profile we obtain the pre-
liminary strength. In order to satisfy ∇ ·B= 0 we need to take
into account the curvature, which we can easily find as x′′(s).

So far we have constructed a magnetic knot with finite
width, but no internal twist. By adding a component that is
not tangent to x(s) we can add such a twist to the field. An
example magnetic trefoil knot is shown in Figure 1, where we
chose nf = 3 and a twist parameter of 1.22.

Apart from the class of knots described in equation (1) we
also study one that requires a different description, the 818
knot. Its central spine is given as

x(s) =

 (C+ sin(4s))sin(3s)
(C+ sin(4s))cos(3s)

Dcos(8s)

 , (3)

with the same parameters as in equation (1). A rendering of
the 818 knot can be seen in Figure 6 (panel a) .

Apart from knots we also investigate the relaxation of links
that are topologically non-trivial. One of them is the Bor-
romean rings configuration. Unlike in its usual depiction, we
do not project it onto a plane and choose a more symmetric
representation consisting of three magnetic flux ovals. Those
are arranged such that by removing one, the remaining two
constitute two unlinked and topologically trivial flux rings. A
rendering of the Borromean rings can be seen in Figure 5.

The last configuration consists of one flux ring that is linked
with two others on opposing sides, like a short chain where the
flux rings are the links. We can think of this configuration as a
sort of double Hopf link where each of the two links contribute
to the magnetic helicity content. By changing the sign of the
flux in one of the outer rings we can construct topologically
different cases, one with helicity and one without. A rendering
of the triple ring configurations rings can be seen in Figure 3.

Since our computational code uses the magnetic vector po-
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tential A instead of the magnetic field B = ∇ ×A for the
computation, we need as last step of the construction to com-
pute the inverse curl. We can do this by first taking the curl

J = ∇×B, (4)

which gives us the current density J . We then express the
current density using the magnetic vector potential as

J = ∇×∇×A

= −∆A+∇(∇ ·A). (5)

Using the Coulomb gauge ∇ ·A = 0 we can then perform a
Fourier transform on the problem

F{J}(k) =−k2F{A}(k), (6)

invert it in k-space

F{A}(k) =−F{J}(k)/k2, (7)

solve this algebraic equation and transform this solution back
into real space. Since all of our initial conditions are 0 at the
domain boundaries we have periodic initial conditions and the
Fourier method leads to valid initial vector potentials A, such
that ∇×A matches our initial construction of B, up to small
numerical errors.

B. Simulation Setup

The magnetic knot or link is the initial condition of our nu-
merical experiments. We place the configuration into a Carte-
sian box with size [8,8,8]. Being periodic, there are no fluxes
outside the domain.

In our model we make use of the magnetohydrodynamics
equations of a viscous, diffusive, compressible gas

∂A

∂ t
= u×B+η∇

2A, (8)

Du

Dt
= −c2

s ∇ lnρ +
J ×B

ρ
+Fvisc, (9)

Dlnρ

Dt
= −∇ ·u, (10)

with the fluid velocity u, constant magnetic resistivity (dif-
fusivity) η , advective derivative D/Dt = ∂/∂ t +u ·∇, sound
speed cs = γ p/ρ , density ρ , electric current density J = ∇×
B and viscous force Fvisc. The viscous force captures the fric-
tion between molecules and is given as Fvisc = ρ−1∇ ·2νρS,
with the traceless rate of strain tensor Si j =

1
2 (ui, j + u j,i)−

1
3 δi j∇ ·u. We make implicitly use of an equation of state of an
ideal monatomic gas, as we eliminated pressure p for density
ρ . To solve the equations we make use of the PENCILCODE1,9

(https://github.com/pencil-code), which is a sixth or-
der in space and fourth order in time finite difference code.

To keep kinetic and magnetic dissipation low we choose for
the viscosity and magnetic resistivity ν = η = 10−3 for most
of our simulations. That way, the magnetic helicity won’t be

significantly affected by magnetic diffusion during dynami-
cally relevant times. In a comparison we will also show a few
simulations using ν = η = 5×10−4.

For the boundary conditions we choose periodic bound-
aries for all of our setups. Not only is this a computation-
ally unproblematic condition, but it helps us conserving en-
ergy (magnetic and kinetic) and magnetic helicity together
with current helicity.

C. Magnetic Helicity Dissipation

In an ideal fluid with no viscosity and no magnetic diffusion
(ν = η = 0) the magnetic helicity

Hm =
∫

V
A ·B dV (11)

is exactly conserved. ν and η are finite, albeit very small, for
physically interesting objects, like stars, galaxies, planetary
interiors and fusion devices. From the MHD equations (8)–
(10) we can easily derive the rate of change of the magnetic
helicity as

∂Hm

∂ t
=−2η

∫
V
J ·B dV. (12)

Here we see that for η = 0 magnetic helicity is conserved.
For a finite η the rate of dissipation depends on the magnetic
field strength, the current density and their alignment. In tur-
bulent media the current can reach relatively high values as the
magnetic field undergoes repeated reconnection events. So,
even with a small η we cannot exclude a significant change in
the magnetic helicity content. Due to its importance in helicity
conservation, we will monitor this value for our simulations.

III. RESULTS

A. Geometry Evolution

Before analyzing the evolution of the magnetic field and
helicity in time we study the geometric evolution of the field
lines. For the visualization of the magnetic streamlines we
make use of the open-source tool BlenDaViz23 and trace a
number of magnetic streamlines. The streamlines have their
seeds where the field strength is relatively strong, so we avoid
noise generated in weak field domains. Here we compare the
topological structure of a selection of magnetic fields at their
initial configuration and final state when we stop the calcula-
tions.

For all of our calculations we observe a fast dynamical
regime until a simulation time of less than 100. This regime
is dominated by the Lorentz force that causes some of the
configurations to contract. As the flux tubes approach, large
currents are being generated which then leads to energy loss
through Ohmic heating. After this regime, the resulting mag-
netic field is subject to a slow diffusion of time scale of 2000
code time units.

https://github.com/pencil-code
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1. Knots

In Figure 2 we show the initial field configuration for the
trefoil knots together with the final field configurations after
magnetic relaxation. For a fair comparison the final time is
t = 150 in code units for all configurations. The internal twist
is ascending from left to right and is chosen such that the sec-
ond knot (panels b and e) has a twist that generates a heli-
city exactly opposite of the helicity from the knotedness. The
highly twisted knot has a helicity of equal strength, but oppo-
site sign of the untwisted knot (panels c and f) .

From the magnetic helicity conservation and the realizabil-
ity condition we would expect that after relaxation, and the
accompanying field line reconnection, the two helical cases
(a and c) should approximately stay helical while the non-
helical case should lose all its initial structure. However, all
three configurations clearly show a twist and with that a he-
lical field at final times. This is on contrast to previous find-
ings where non-helical fields would evolve into a state with
no discernible structure15. This is clearly due to a genera-
tion of magnetic helicity within dynamical time scales, as we
will discuss in more detail further below. This helicity gen-
eration is clearly not strong enough for the untwisted knot to
be transformed into a non-helical field, which would then lose
its initial structure. But it is fast enough for the twisted knot
to generate a large enough amount of helicity, in a time much
shorter than the diffusive time, so that the final structure is
similarly twisted as the plain knot.

For the 4-foil and 5-foil knot configurations we observe
qualitatively the same behaviour. Since the initial helicity is
larger than for the trefoil knot the final state is more twisted.
For the non-helical case with the opposing internal twist, we
observe a significant generation of twist and therefore heli-
city. To conserve space we moved the results for the 4-foil
and 5-foil knots to appendix A.

2. Triple Rings

For the triple rings configurations we have five realizations
divided into two sets. One set derives from the non-helical
configuration and the other form the helical. By adding an
internal twist to the non-helical we can induce a magnetic he-
licity content of the same size as the untwisted helical triple
ring. For the helical triple rings we can add a twist so that the
helicity exactly vanishes and an opposite twist to double the
magnetic helicity compared to the untwisted case.

The three linked rings, by contrast to the knots, do not show
much unexpected behaviour. Here, the helical configurations
retain their topological structure during the relaxation, while
the non-helical ones decay into a field that is more trivial (see
Figure 3 and Figure 4). Unlike the twisted non-helical knots,
the twisted non-helical triple ring field (Figure 4, panels a and
c) does not show any significant generation of helicity. With
that the relaxed field is roughly trivial.

We attribute this different behavior to the absence of any
significant magnetic helicity generation from the internal
twist. Currently we cannot explain why this is the case for

the other test configurations, but not for the triple rings con-
figuration.

3. Borromean Rings

For the untwisted Borromean rings we observe the same
behaviour as in the work by 11. This is not surprising, as the
simulation setup is very close to theirs and we make use of
the same numerical code. Here we see that the non-helical
Borromean rings undergo a series of reconnection events and
relax into a configuration consisting of two separate and op-
positely twisted fields (Figure 5, panel c).

The Borromean rings configuration with the internal twist,
however, relaxes into a relatively compact field (panel d) .
This field has a clear twist, which is a consequence of the
magnetic helicity conservation in this low resistivity system.
Like the triple-ring, and in contrast to the knots, we observe a
behavior predicted from the magnetic helicity conservation.

4. 818 Knot

The plain 818 knot is a non-helical configuration. With he-
licity conservation we expect a topologically trivial relaxed
field at final simulation time. Although we indeed do not ob-
serve any significant change in magnetic helicity the final state
appears to be a topologically non-trivial bundle of twisted
field lines (Figure 6 panel c). However, upon closer in-
spection, we see that this bundle has only a small net twist,
which makes it topologically trivial.

The twisted 818 knot is a helical field with its helicity com-
ing entirely from the twist. If its magnetic helicity is approxi-
mately conserved during its relaxation, we should see a topo-
logically non-trivial field at the end of the simulation. This is
indeed what we observe in panel d, where there is a clear twist
at the final time.

B. Magnetic Helicity

In the limit of vanishing magnetic resistivity, we know that
the magnetic helicity is conserved (see equation (12)). How-
ever, this is only true if the J ·B term is not so large as to
compensate for a small η . If there is a net alignment between
the magnetic field B and electric current density J then we
should see dissipation. For a net anti-alignment we would ob-
serve an increase in helicity. Potential loci for this to happen
are reconnection regions, since there J and B are relatively
aligned. Furthermore, the current in these regions typically
increases significantly which leads to Ohmic heating.

Other sources of J–B alignment are magnetic twist. For
an untwisted magnetic flux tube the generating currents are
purely toroidal. Adding a twist has two effects. First, the
toroidal magnetic field component is now aligned with the
toroidal current that generates the untwisted part of the mag-
netic field. Second, the twist component is generated by an
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a) t = 0, tw= 0 b) t = 0, tw= 1 c) t = 0, tw= 2

d) t = 150, tw= 0 e) t = 150, tw= 1 f) t = 150, tw= 2

FIG. 2. Initial magnetic streamlines for the trefoil knot configuration (top) using different twist parameter tw such that the left has no twist,
the middle has a twist that reduces the helicity to zero and the right a strong twist with opposite helicity to the left one. The lower figures show
the streamlines at time 150.

axial magnetic field and is aligned with the axial magnetic
field of the untwisted magnetic field component.

To better understand the helicity evolution for our simula-
tions we monitor the volume averaged magnetic helicity in
time. The definition of this average is

⟨A ·B⟩= 1
V

∫
V
A ·B dV. (13)

Since we are also interested in the generation of helicity we
also monitor the spatially averaged current helicity

⟨J ·B⟩= 1
V

∫
V
J ·B dV. (14)

1. Knots

For the untwisted knots we observe a relatively slow loss
of helicity (Figure 7, solid lines). While the initial loss is
fast, after some short time it slows down. Nevertheless,
the loss is faster than the expected resistive decay time of
τres = L2/η ≈ 1000, where L ≈ 1 is a typical length scale of
the system. So we already see that even without internal twist,
the contribution of the J–B-alignment is significant.

For the twisted knots with zero helicity (Figure 7, dashed
lines) we see a significant generation of negative helicity at
initial times. The time scales are much shorter than the diffu-
sion time. This change is again due to the net alignment of J
and B, which is even more significant than for the untwisted
knots.

For the highly twisted knots with opposite magnetic heli-
city we see a strong initial decrease of helicity. Similar to the
previous cases, this is due to an even stronger alignment of J
and B. Within this very short time period we even observe a
sign change and an approach to the magnetic helicity of the
untwisted case.

The J ·B term is so dominant, that within much less than
the diffusion time we see a significant decrease in magnetic
helicity for the twisted cases. This effect is increases with
twist parameter (see Figure 8).

For comparison we also plot the Hopf link in the same
graph. This configuration is helical due to the mutual link-
ing of two magnetic flux rings. Similarly to the knots we can
add an internal twist to the magnetic flux tubes to reduce the
helicity content to 0. Unlike the twisted knots with zero ini-
tial helicity, the twisted Hopf link with no initial helicity does
not show any significant change within dynamical times. This
shows that a twist does not necessarily lead to a J–B align-
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a) t = 0, tw= 0, H0 = 0 b) t = 0, tw= 1, H0 = 0

c) t = 150, tw= 0, H0 = 0 d) t = 150, tw= 1, H0 = 0

FIG. 3. Initial magnetic streamlines for the triple ring configurations (top). With twist parameter tw = 0 this would be a non-helical field
(hence H0 = 0) . The lower figures show the streamlines at time 150.

ment.

2. Triple Rings

While the twisted knots showed a significant change in
magnetic helicity at time scales much shorter than the diffu-
sive time, the twisted triple ring configurations exhibit a less
dramatic behavior (see Figure 9). This behavior is more rem-
iniscent of what we would expect if we assumed that helicity
was conserved due to the small magnetic diffusivity η . The
reason is a much weaker alignment of the current density and
the magnetic field, even for the case of a strong internal twist.
Although currently we cannot give an explanation on why the
triple rings behave differently, it shows that an internal twist
does not necessarily lead to helicity decay or generation.

3. Borromean Rings and 818 Knot

The twisted Borromean rings and the 818 knot both show
similar decay rates for the magnetic helicity (Figure 10).
Within time scales as short as ca. 1% of the diffusive time
scale the helicity already dissipates. This should be contrasted

to the near conservation for the case of no internal twist.
The different behavior of the twist and no-twist case can be

explained by the alignment of J and B. From Figure 11 we
see that the untwisted Borromean rings and untwisted 818 knot
have a constantly low helicity production term. This contrasts
to the much larger values for the twisted cases. So, similarly
to the knots, the internal twist leads to helicity decay due to a
significant alignment of J and B.

C. Magnetic Energy

From previous studies11,15 we know that magnetic knots
and links have a slow energy decay compared to topologically
trivial configurations. It has been shown that, rather than the
actual linking, the magnetic helicity content is the determining
factor for the speed of energy decay15.

Here we have a set of test cases that can either corroborate
those findings or put a caveat to them. If the magnetic helicity
alone was the determining factor, then for the helical cases
we should see a slow decay while for the twisted zero-helicity
cases we should see a faster energy decay.

To test this hypothesis we plot the spatially averaged mag-
netic energy density for the triple ring configurations with and
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a) t = 0, tw=−1, H0 = 2 b) t = 0, tw= 0, H0 = 2 c) t = 0, tw= 1, H0 = 2

d) t = 150, tw=−1, H0 = 2 e) t = 150, tw= 0, H0 = 2 f) t = 150, tw= 1, H0 = 2

FIG. 4. Initial magnetic streamlines for the triple ring configurations (top). With twist parameter tw = 0 this would be a helical field (hence
H0 = 2) . The left field has negative twist parameter and the right one positive. With the amount of negative twist the magnetic helicity of the
left configuration is zero and the helicity of the right configuration is double to the untwisted case. The lower figures show the streamlines at
time 150.

without twist (Figure 12) and then normalize to its initial value
ar t = 0. This spatial average is analogous to what we did for
the helicities, i.e.

⟨B2⟩= 1
V

∫
V
B2 dV. (15)

There we see that it is indeed the magnetic helicity that deter-
mines the speed of the energy decay. For the two non-helical
configurations there is a steeper decay than for the three heli-
cal cases.

Of course we could have just picked the set of test cases that
exactly proved our hypothesis. So, we also plot the magnetic
energy for the knots (Figure 13). There we can clearly see
that the energy decay is of the same speed for all test cases,
independent of the type of knot (3, 4 or 5-foil) and the inter-
nal twist tw. Unlike the previous studies this suggests that it
is the field line topology manifested as knottedness and twist
that is more of a determinant than the initial helicity itself.
Here we emphasize initial, as the helicity can rapidly change
even in our low resistivity environment, as we have seen in the
previous section. This non-conservation is the reason for the
similar energy decay.

Since for the Borromean rings and the 818 knot we also

observe a rapid loss of magnetic helicity we would expect that
the helical and non-helical cases exhibit a similar decay rate
for the magnetic energy. From Figure 14 we see that this is
indeed the case. The decay rates are almost indistinguishable.

While the realizability condition provides a lower bound
of the magnetic energy in presence of magnetic helicity, an
initially helical field is no guarantee that the energy decays
only slowly. The observed helicity losses at time scales much
shorter than the diffusive time annul such decay restrictions.
We saw that only for the triple rings there is a relative conser-
vation of helicity and with that a slow energy decay.

IV. EFFECT OF LOW MAGNETIC RESISTIVITY

The J ·B-term that is responsible for the generation and
annihilation of magnetic helicity, is clearly large enough to
lead to significant changes in the helicity within dynamical
time scales. Since we have a prefactor of the magnetic resis-
tivity η in equation (12) we expect an insignificant change in
helicity in low resistivity systems, like the solar atmosphere
or laboratory plasmas.

At the same time we know that with reduced resistiv-
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a) t = 0, tw= 0 b) t = 0, tw= 1

c) t = 150, tw= 0 d) t = 150, tw= 1

FIG. 5. Initial magnetic streamlines for the Borromean rings configurations (top) with (left) and without (right) internal twist. The lower
figures show the streamlines at time 150. Note the slightly changed perspective compared to the other streamline plots.

ity, plasmas are more turbulent and magnetic reconnection is
more efficient. For reconnection to happen we need alignment
of J and B. So, it is conceivable that in the low resistivity
regime a reduced η is compensated by an increased J ·B.

In this section we like to study the rate of change of mag-
netic helicity for low dissipation regimes. We repeat the nu-
merical experiment for the trefoil knot with strong internal
twist, i.e. with internal twist that changes the sign of the mag-
netic helicity. We halve the magnetic resistivity η to 5×10−4,
as well as the viscosity ν to 5 × 10−4 in order to keep the
Prandtl number at 1.

We first observe that the alignment of the electric current
density J and the magnetic field B is stronger with reduced
magnetic diffusion (see Figure 15). At early times (until ca.
t = 5) the difference is relatively small by ca. 30%. At later
times, the relative difference is more of a factor of 4, where
J ·B is small for both cases. For the helicity production this
quantity is relevant, but also carries a prefactor of η , which is
half for the low diffusion case.

The observed increase of the J–B alignment is, however,
not strong enough to compensate for the halved prefactor η in
the helicity production. For the helicity we observe a signifi-
cantly smaller drop for the low diffusion case (see Figure 16).
From the realizability condition, we would therefore expect a
smaller drop in magnetic energy, at least for those times. This

is indeed what we observe (see Figure 17). However, for later
times there is a drop in magnetic helicity even for the low dif-
fusion case, which is why we also observe a significant drop
in magnetic energy at time t > 40.

V. CONCLUSIONS

In our study we investigated the the robustness of the role of
magnetic helicity in the relaxation of topologically non-trivial
magnetic flux tubes in a plasma environment. This was done
by simulating the visco-resistive relaxation of magnetic knots
and links. To contrast the effect of topology and magnetic
helicity we vary the internal twist of the fields.

While we confirm the importance of the realizability condi-
tion as restriction of the field relaxation, the presence of mag-
netic helicity does not automatically lead to a restricted decay.
One reason for this is the presence of source terms for the
magnetic helicity. Especially for fields with an internal twist
we see that this term can be so large to significantly change
the helicity content within dynamical time scales. With the
loss of helicity, the restrictions on the relaxation do not hold.

This has implications for solar magnetic fields, as they show
topologically non-trivial forms and can contain an internal
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a) t = 0, tw= 0 b) t = 0, tw=−1

c) t = 150, tw= 0 d) t = 150, tw=−1

FIG. 6. Initial magnetic streamlines for the 818 knot configurations (top) with and without internal twist. The lower figures show the
streamlines at time 150.

twist. Here we should keep in mind that through the twist
the alignment of the magnetic field with the electric current
density is significant and can potentially lead to changes in
helicity. However, to draw more precise conclusions for solar
magnetic fields, either in the convection zone, chromosphere
or corona, we would require a study that incorporates param-
eters found in such environments, such as density and temper-
ature gradients.

In order to apply our findings to laboratory or stellar plas-
mas we also need to consider the scaling of all of our terms,
particularly the J–B alignment. If we were to reduce the
scale of our systems while keeping the magnetic field strength
B constant, our currents J would increase due to the larger
spatial variations. The same argument can be applied to
the magnetic vector potential A which would decrease in
strength. The result is a smaller magnetic helicity density
h =A ·B and a larger J–B alignment. The increased J–B
alignment leads to an increased loss/generation rate of mag-
netic helicity that is inversely proportional to the scaling. So,
a half size system would lose/generate the same amount of
helicity in half the time.

However, if we ask about the loss of normalized (to time 0)
helicity we introduce one more scaling by dividing by the ini-
tial magnetic helicity. The loss of this quantity happens then
on a quarter of the time of the un-scaled system. Furthermore,

in turbulent scenarios it is usually the resistive time scale that
is important, which is τres = L2/η . With changing scale L our
normalized magnetic helicity would then change at the same
diffusive times as in the un-scaled system.
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Appendix A: Field Evolution

For completeness we show the evolution of the knots that
have been mentioned only in passing. Those are the 4 and
5-foil knots. The qualitative evolution is the same as for the
trefoil knot (see Figure 18 and Figure 19) with the appearance
of a twisted structure even for the initially non-helical case.
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FIG. 13. Normalized magnetic energy in dependence of time for the
knot configurations using different twist parameter tw. For guidance
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field B for the trefoil knot with twist 2 and comparing high and low
diffusivity.
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trefoil knot with twist 2 and comparing high and low diffusivity.
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FIG. 17. Normalized magnetic energy in dependence of time for the
trefoil knot with twist 2 and comparing high and low diffusivity.

a) t = 0, tw= 0 b) t = 0, tw= 1 c) t = 0, tw= 2

d) t = 150, tw= 0 e) t = 150, tw= 1 f) t = 150, tw= 2

FIG. 18. Initial magnetic streamlines for the 4-foil knot configuration (top) using different twist parameter tw such that the left has no twist,
the middle has a twist that reduces the helicity to zero and the right a strong twist with opposite helicity to the left one. The lower figures show
the streamlines at time 150.
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a) t = 0, tw= 0 b) t = 0, tw= 1 c) t = 0, tw= 2

d) t = 150, tw= 0 e) t = 150, tw= 1 f) t = 150, tw= 2

FIG. 19. Initial magnetic streamlines for the 5-foil knot configuration (top) using different twist parameter tw such that the left has no twist,
the middle has a twist that reduces the helicity to zero and the right a strong twist with opposite helicity to the left one. The lower figures show
the streamlines at time 150.
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